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Molecular dynamics study of the vulcanization transition
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We report on extensive computer simulations of randomly cross-linked polymer networks in the vicinity of
the liquid-solid transition. We have determined the order parameter and the distribution of localization lengths
as a function of cross-link density near the critical point for up t& =500 chains of lengtiN=10 andM
=100 chains of lengtin=20. We find that the order parameter variegi@s) ~n—n., in agreement with the
classical and modern theories of rubber elasticity and that the distribution of localization lengths assumes a
universal form, in agreement with recent predictigr&1063-651X98)05609-§

PACS numbe(s): 82.70.Gg, 78.30.Ly, 64.60.Ak

I. INTRODUCTION tion of the critical cross-link density was rather imprecise
and the exponeng, also quite uncertain. The largest system
When polymers in a dense melt are irreversibly crossconsisted of 100 chains of lengti=10 and the range of
linked a phase transition from a liquid state to an amorphousross-link densities over which the percolation probability
solid state occurs if the density of cross-links is sufficientlydrops from 1 to a small number is extremely wide. Presum-
high. This is the vulcanization transition, which has beenably, the same is true of the range of densities over which
studied both experimentally and theoretically for many yearg/ulcanization occursif these are different The same diffi-
[1]. The classical theories of rubber elastidiB] consist es- culties plagued a later calculation of the critical behavior of
sentially of Gaussian polymer theory combined with thethe shear modulug7]. Since this particular finite-size effect
mean field theory(Bethe latticg of percolation. It is only depends on the number of chains and not on the length of the
since the 1970s, beginning with work of de Genfglthat  chains, we have chosen, in the present work, to work with
ideas originating in the modern theory of critical phenomengshort chains and to increase, as much as our resources per-
have been applied to the vulcanization transition. More remit, the numbemM of chains.
cently, Goldbart and collaboratofd] building on work of We report, in this paper on the calculation of the order
Edwards and co-worker§5] have constructed a replica parameter and the distribution of localization lengths for
theory of the vulcanization transition that treats the percolachains of lengtiN= 10 and numbers of chaid =200, 300,
tive aspects and the quenched disorder introduced by th@nd 500. We also include, for comparison, results for a sys-
random cross-links in a unified way. This new theory hastem of 100 chains of lengtN=20. These larger systems all
produced a number of specific predictions. Of interest forhave a critical cross-link density very closertg=1 and an
this paper are the followindi) the critical density of cross- exponentS,~1. Moreover, the distribution of localization
links n=Ng/M=~1.0 whereN, is the number of cross-links lengths is now in remarkably good agreement with the pre-
andM is the number of chaingii) the order parametey (to  dictions of [4]. One remaining puzzle is that the critical
be defined beloyvaries near the critical cross-link density cross-link density, as determined from the point at which the
asg~n—n., and(iii) there exists a universal distribution of order parameter vanishes, is measurably above the cross-link
localization lengthsP(¢) in the amorphous phase, at leastdensity at which geometric percolation occurs. However,
sufficiently close tan, . Predictiong(i) and(ii) are consistent there are some indications that this may be a finite size ef-
with the classical theories of vulcanization albeit derived byfect.
quite different reasoning bufiii) is unique to the newer The structure of this article is as follows. In Sec. Il we
theory. briefly describe the model, computational techniques, and
Motivated by these developments, we began some timgome aspects of the data analysis. Section Il contains the
ago to investigate the vulcanization transition by molecularresults and we conclude in Sec. IV with a brief discussion
dynamics simulations. In a first papgg], we studied rela- and an outlook for future work.
tively small numbers of chains of various lengths and calcu-
lated the order parameter and distribution of localization
lengths. Our results for the order parameter wegre(n Il. MODEL AND COMPUTATIONAL TECHNIQUES
—n¢)Pa with an exponenB,~0.5, i.e., inconsistent with one
of the aforementioned predictions. On the other hand, the
distribution of localization lengths, when plotted in terms of  For completeness, we briefly describe our model of poly-
an appropriate scaled variable proved to be essentially indewners, which is identical to that used by Kremer, Grest, and
pendent of the relevant parameters such as chain length aedllaboratorg8] in their simulations. All particles in the sys-
number of cross-links. In these simulations, the determinatem interact through a purely repulsive 6-12 potential:

A. Hamiltonian and computational details
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linked systems it is possible to carry out a long enough MD

12 6
o o 1
I > . : )
€ (_) _(_) +2), rj<2%e run that this asymptotic value is clearly attained. On the
Uia(rij)= Fij rig) 4 (1) : ” : on
A e other hand, in the critical region the longest relaxation time
0, rij=2"o. is considerably longer than our computational limit and it is

necessary to extrapolaig(n,t) to t=c«. This potentially
problematic extrapolation is discussed in the next subsection.
We have also determined the distribution of localization
1 ro\2 lengths. In the amorphous phase, each mongrtieat is part
2 ij iq i i
— ~kR2In| 1— <_) } rij<Ro of the rigid structure is typically free to fluctuate over some
2 Ro (2)  distanceg; . If the probability of finding particlg at a given
0, rij=Ro, point r; is described by the isotropic Gaussian probability
density
where Ry=1.50 and k=30e/c2. With these parameters,
chains are unable to cut through each other. B 1 |r__r|2
In contrast to our previous constant energy molecular dy- p{ - %} ,
namics calculations, we have here used a Brownian dynam- 3
ics scheme at a temperatukgT/e=1 with a time stepst
=0.012/mo%€ and a standard velocity Verlet algorithm for then the partial order parameter for partigldqy(j,t)|?, is
the integration of the equations of motipt0]. The systems given by exp-k?£7/2) and from this relation we may obtain
were equilibrated as polymer melts at a dengity’=0.85,  the localization lengtfE;(t) and a histogram of the function
where p=NM/V, with V the volume of the computational P(§(t)). The time dependence i§ and thereforeP(¢)
box. Periodic boundary conditions were used. comes from the fact that the MD simulation is, in general,
After equilibration, permanent cross-links were imposedterminated before the order parameters have attained their
on the system by randomly selecting pairs of monomer@symptotic values. However, it transpires that the distribu-
within a distance of 1.25 of each other and tethering them tion P when plotted as function of the scaled variaffé(t),
together by means of the potenti@. Any pair of particles, \here £(t) is the mean localization length calculated from
except nearest nelghbors_on the same cha_ln, were considerggh order parameters averaged to tinieindependent of to
eligible. Thus there were invariably a certain number of self-5, axcellent approximatiof6] and we are confident that the

linkages, i.e., cross-links between distant monomers on thgyhorted distribution of localization lengths represents the
same chair{11]. The new equations of motion were then jyfinite time limit.

integrated, typically for (8- 9)x 10° and in some cases for
3.6x 10" time steps. The desired physical quantities were
obtained from averages over 10—25 independent realizations

Tethering of theN particles on each chain is enforced by the
attractive potential9]

Unn(rij):

(6

P(ry)=
J 77_3/2§J3/2

C. Data analysis

of the same fixed number of cross-links. The extrapolation of the running averagén,t) to the
infinite time limit is a potential source of error and we there-
B. Measured quantities fore discuss it here in some detail. In our previous simula-

tions [6] we had noticed that if we plotted(n,t) against
t~12 the data seemed to approach a straight line at long
times. However, there is no convincing theoretical argument

1t for this behavior and the extrapolation must therefore be ex-
a(j, == elkrn), (3) amined critically. For samples that are clearly in the rigid

tizy regime, one can attempt to fit the data to a function of the
form q(n,t)=qo+at™ ¢ and we have done this for a number
of data sets. Although the estimates ¢pfare not very pre-

For each of the monomejsn the system, we calculated
the time average of the quantity(j) =exglik-r;}, i.e.,

Herek=(2m/L)(ny,ny,n,) wherelL is the length of a side
of the cubic computational .box amd, integers. We used cise, they are generally in the vicinity @=0.5. Another
only the three smallest availablevectors[(1,0,0, (0,1,0,  annroach is to assume thatis independent of the cross-link
(0,0,3] and, in the end, averaged the three sets of resultjensityn and attempt to determine it from log-log plots of
The order parameter of the system is then given by q(n,t) for samples that, by any reasonable method of ex-
1 trapolation, clearly are fluid and for whict(n,t) should
ae(n) = WE [lim qu(j,t)[?, (4) dlsplay a power-law decay. Figure 1 shows such a plot for
I too four different samples of 200 polymers of length 10 in the
critical region. The data points do seem to fall asymptotically
where the sum is over all monomers in the system. For reapn a straight line with slope)~1/2.
sons discussed ii6], we constructed a series of partial time  |n the amorphous phase, we have generally fitted the data

averagesj(n,t): to q(n,t)=qgo+at Y>+bt™ in order to take into account
1 the curvature of the data at early times. To test the reliability
; f this procedure, we have run the simulations for a number
n,t = i ,t 2 . 5 0 ’ !
a(n.t 3NM§k: 2,: (3.0l © of samples for much longer times than the standaxdlé®

time stepgfor 200 polymersand compared the extrapolated
This function has initial valuej(n,1)=1 and decreases to- values from shorter runs to those obtained from longer runs.
wards its asymptotic value asincreases. For heavily cross- Such a comparison is shown in Fig. 2 for 200 chains of
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FIG. 3. The probability that geometric percolation occurs as a
function of cross-link density for chains of length=10. The criti-

FIG. 1. Plot of the running averaggn,t) for a set of samples ==
cal concentration i8pe~0.95.

of 200 chains of length 10 in the critical region. All reasonable
methods of extrapolation yield(n,»)=0 for these samples. For
Ionglfizmes the data are consistent with the functional fopm,t) Ill. RESULTS

v As mentioned in the Introduction, we are interested in

investigating the behavior of cross-linked polymers in the

length 10 with two samples, each wily,= 250 cross-links.  critical region and therefore have concentrated our efforts
There are two noteworthy features to this figure. First, we segoward increasing the numbéd of chains rather than the
that the fluctuation of the order parameter from sample t@hain lengthN. The reason for this is partly shown in Fig. 3
sample is extraordinarily large: The extrapolated values foivhere the fraction of samples that percolate in all three di-
these two cases differ by almost a factor of 2. On the othefections is plotted as a function of cross-link density for
hand, the estimates af, obtained from runs of 2410"  chains of length 10 foM =100 toM = 500. For comparison
time steps differ only by a few percent from those obtainedye have also shown the percolation probability for 100
from runs a factor of 3 shorter. It is also reassuring that therghains of length 20, which falls essentially on top of the data
is no systematic trend: In one case, the estimatgofs  for 100 chains of length 10. It is clear that the transition
raised with the addition of more data, in the other case it igegion, which one could define, for example, to be the range
lowered. We are therefore of the opinion that the uncertainof cross-link densities over whidhyincreases from 0.25 to
ties in our estimate of the order parameter are primarily du®.75 narrows substantially as the number of chains is in-
to the fluctuations generated by the random nature of thereased from 100 to 500. The critical concentration for per-
cross-linkings and to a much lesser extent due to the extrapeolation can be estimated from the intersection of the func-

lation procedure. tions f e {n) for different values oM. This occurs anpe
~0.95.

0.6 We have carried out extensive MD simulations, as de-
o q,=271, 6x10°-8x10° scribed above, for the systems of sidle=200 and 300 and
0.5-F q =274, 6x10°-24x10° have simulated a few cross-link densities in the critical re-

K :

q(t) - & gion for M=500. For the system of 200 chains, we have
0.4 7oA typically used 25 different realizations of the same cross-link
. q,=144, 6x10°-8x10° density to obtain the order parameter and have generally
03-L used integration times of810° MD steps. For the system

=139, 6x10°-24x10° ; . .
% * * of 300 chains, we have averaged over 16 different realiza-

tions of the cross-linkings and integrated the equations of
—o—N,=250, #1 motion for a minimum of % 10° time steps. In the case of
o1k —o—N_=250, #2 500 chains, the integration time was %.50 time steps. In
X studying such short chains, we are focusing on a regime in
0Dt I | which the effects of entanglements should be insignificant
0 0.002 0.004 0.006 [12]. Moreover, it is possible that the transition from the
t'? liquid to the amorphous phase may be in the percolative
universality class rather than in the vulcanization universality

0.2+

FIG. 2. Test of the extrapolation procedunét)=gqq+at™ 2 7 ) . )
+bt™! for two systems of 200 polymers of length 10 wikly, class, which is associated with the lint— [3,13)

=250 cross-links. The MD simulation was carried out for 2.4 The resullts for the or_der pgrameter are shown in Fig. 4.
X 10’ time steps. The first set of extrapolations uses the data fo‘rA‘Ith_OuQ_h the data are quite r!0|sy, du? to the small number of
q(n,t) for 6x 10°<t=8x 10°; the second pair uses the remaining real|_zat|on§ for each cr_oss—lmk dens_lty, taken together they
data. We note that the differences between the two estimatgs of Provide quite strong evidence for a linear dependence of the
for each system is quite small, especially when compared to th@rder parameter on. For both 200 chains and 300 chains,
difference between the two asymptotic valuesipaind that there is  the median value of the extrapolated order parameter is zero
no systematic trend to either lower or higher estimates when moratn.=1.0[14]. Indeed, the fit of the data fdvl =200 to the

data is added. functional formg=a(n—ng)?a yields n,=1.01, Bq=0.99.
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FIG. 4. The order parametey(n) as a function of cross-link FIG. 6. The probability distribution of localization lengths of

densityn=N /M for N=10 andM =200, 300. The solid line isa monomers connected to the largest cluster in a given sample, to-
fit of the data forM =200 to g(n)=a(n—n.)?, which yieldsn, gether with the predicted universal function[df (solid line).
=1.01,3=0.99.

zero atn=0.96. It can therefore not be ruled out that
The data forM =300 are too sparse to permit a three- =Npercin the thermodynamic limit, consistent with the gen-
parameter fit, but since they are interleaved between theral view that the onset of rigidity and geometric percolation
points forM =200, it is clear than.=1, 8,~1 adequately ~coincide, except possibly &t=0 [15].
describes both systems. For comparison, we show in Fig. 5 As discussed in Sec. Il, we have also calculated the dis-
the order parameter fa=10, M =200 together with the tribution of localization lengths. In contrast to our previous
order parameter for the system of 100 chains of length 20~0rk [6], we have used only those monomers that are con-
These data are also consistent with a linear dependenge ofnected to the largespercolating cluster in the system and
on n—n, and demonstrate how the longer floppy segmentégnored the remaining particles. This means that particles
between cross links reduce the magnitude of the order pahat are localized solely due to entanglements are not taken
rameter. into account. On the other hand, this procedure removes a

The critical concentration of cross linkg~1.0 obtained ~Secondary peak at largé which is due to freely drifting
from q(n) is somewhat h|ghe|’ than the perco|ation Concen.ChalnS. As mentioned above, the distribution of localization
tration n,e,~0.95. What makes this result puzzling is that lengths, when plotted as a function &k¢), is quite insen-
Nperc Obtained from the intersection of the percolation prob-Sitive to the cutoff time in the MD run and should be re-
abilities for different numbers of chains is, in fact, a gener-garded as characteristic of the equilibrium state. In Fig. 6, we
ally reliable and stable method of estimating the percolatiorfhow this scaled distribution function for polymers of length
concentration in the thermodynamic limit—. Itis clear ~N=10 together with the universal functid®(¢) derived by
from F|g 3 that forn= 1.0, all but a very small subset of Goldbartet a|[4], scaled in the same way. In contrast to our
samples percolate in all three directions. Nevertheless, fdPrevious results for smaller systems and with the free poly-
both M =200 andM =300 less than half display a finite Mers included, the theoretical curve and simulation results
value of g. To further investigate whether or not this is a @ré in remarkable agreement. It is particularly noteworthy
finite size effect, we have generated a number of samples fdhat the simulations support the notion of universality: curves
N=10, M =500 in the vicinity ofn=1. Preliminary results for different cross-link densities do fall essentially on top of

are that the order parameter is finitenat 1.0 and is equal to  €ach other. Similarly, Fig. 7, in whicR(¢) is plotted for
chains of length 10 and 20, shows that the scaled distribution

o N=10, M=200 is insensitive to chain length.
05T o N=20, M=100 o 1.6—
F O : L
0.4 [ o o PE) | S,
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FIG. 5. Order parameter for 100 polymers of length 20 together
with the corresponding data for 200 polymers of length 10. Al-  FIG. 7. Plot of the distribution of localization lengths for 100
though the longer polymers are floppier, the critical cross-link denpolymers of length 20 together with that for 200 polymers of length
sity and linear variation witm are consistent with that of thd 10, both forn=1.0 cross-links per polymer. This plot again shows
=10 system. that P(¢) is insensitive to microscopic details.



PRE 58 MOLECULAR DYNAMICS STUDY OF THE ... 3351

IV. DISCUSSION nature of the vulcanization transition. de Genfigshas ar-

o its to dat ¢ id bstantial i f ued, on the basis of a Ginzburg criterion, that in the limit
ur resufts to date seem to provide substantial SUppOrtiqy_, ., - nercolation is a classical or mean field transition.

the theory of vulcanization proposed by Goldbart and coly;qeqyer, his argument predicts that the range of cross-link
laboratorg4]. While the agreement of the critical cross-link yansities sn in which fluctuations dominate scales as
densityn.~1 and the exponer,~1 with their predictions  5n/n =aN~13 in three dimensions, where the unknown
is quite pleasing, it must be acknowledged that simulationgyrefactora is presumably nonuniversal. This would seem to
of the size reported here can by no means be regarded gicate that in our caseN(= 10) fluctuations could be im-
conclusive as far as determination of critical parameters anﬁortant in a significant range of cross-link densities unkess
exponents is concerned. Even for the system of 500 chaings very small, and that we should expect to observe the three-
we are in the best of circumstances only able to vary thelimensional percolation exponents, e 8= 0.43. This issue
cross-link density in stepdn=0.002 and this is a measure of has been previously addressed by Grest and Krgmélr
how close we can expect to come to the critical point. Withwho studied percolation of cross-linked polymers using pre-
our resources, it would be prohibitively time consuming tocisely the same model as we do. Their simulations, for
attempt a determination afi; to this accuracy, given the chains of length 25 N=200, showed no evidence of non-
large fluctuations between different cross-linkings that areclassical exponents even for the shortest chain length. Thus
exhibited in Fig. 2 and in the noise in Fig. 4. On the otherthere is good evidence that for this model the prefaetor
hand, we believe that our results for the distribution of local-and thus the critical region, is indeed quite small.

ization lengths are robust and these are in remarkable agree- We also point out that the order parametgn) is tech-
ment with the predictions. nically not the same quantity as the order paramBtgm)

A number of important issues remains to be addressed 438, the probability that a given chain is part of the perco-
far as this simulation work is concerned. First, it will be |ating cluster, of geometric percolation. The difference is due
important to carry out reliable calculations of the elastic con+g the dependence of the average localization ledigih the
stants for cross-linked polymers. Our previous wprk has . . — .
shown that the calculation of elastic constants for the preserEtrOSS'IInk density. Ai—ng, £, at least in the thermo-

model is even more difficult than the calculation of the order dZZ?glsce“r:]ncI)tr('awr: > dlar:g Q;Z'Sa ?]ffecnt smaTr;]/es toerggll_cgne) it
parameter in that the fluctuations are yet larger. In this con: pidly SN—=Ne. Thus, W Ievel

text, it may be worthwhile to consider a less faithful model 'S N Open question whether or not the two order parameter

of the physical cross-linking procefkl] in hopes of achiev- e_xiagnentge tihould b? i.he same ev?.? i lchams of lenth
ing better convergence while still remaining within the same™ are in the percolative universaiity ciass. i .
universality class, The_ crossover between the percolative ar_1d mean.fleld uni-
Another important issue is the question of replica L~:ymme-\'erse.‘“ty classes has also been observed in experiments on
gelation[19,20 where measured exponents typically fall be-

try breaking or ergodicity breaking. The randomly imposed h dicti £ the tw dels. "
permanent cross-links constitute a set of quenched randop/¢en the predictions of the two models. However, systems
ith a very small degree of polymerizatiomN&2) [13]

variables analogous to fluctuating exchange constants in thi ) i X : :
case of spin glasses. Although the existing analytic theorieS€€m to be quite clearly in the percolation universality class.
are replica symmetric and although our previous small-scale
simulationg[6] did not display replica symmetry breaking, it
will nevertheless be interesting to investigate this aspect by We are grateful to Horacio Castillo, Paul Goldbart, and
further simulations. Calculations of the overlap distributionBela Jo for helpful conversations, and to J. L. Borwein for
are presently in progre$46]. computer time. This research was supported by the NSERC
Finally, we return to the issue of chain length and theof Canada.
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